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dbstract: Let G and G* be programs represented by directed graphs. e
define a relstion 5 o between G and G* that formalises the notion of G*
simulating G with S-fold loss of space efficiency end T-fold loss of time
efficiency, and prove that if G s",‘ G*, wvhere G has n statements and G* is

structured, then in the worst case T + lu’lo'z -8 2 1‘“‘:‘ + o(hgzlo;zu).

Keywords and Phrases: 'mmt tree, complexity, comtrol structure,
directed graph, embedding
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1. Introduction

In a previous paper [1], we made precise some intuitive observations
concerning the efficiency of structured programs by dofin:l.n; a combinatorial
relation that corresponds to the notion of uniform eimulation betveen programs.
Informally, we say that a program G* uniformly simulates a program G if G*
carries out the computation of G (and possibly additional computation which
might be regarded as "bookkeeping") in such a way that the space-time efficiency
of G is degraded by a factor that is independent of the size of G. The main
results of [1] indicate that the non-existence of uniform simulations among many
well-known classes of control structures is due to the combinatorial aspects of
program structure and is not at all related to such details of program organi-
zation as choice of data structures or limitations on the form of Boolean
expressions.

Indeed, the main result of [1] (Theorem 5.1) provides a non-trivial lower
bound on the loss of space-time efficiency in any structured simulation of a
§?f? program. This short note extends that result, improving the space-time
inequality of [1, Theorem 5.1] by an exponential. Thus we now show ‘that there

are goto programs with n statements such that,for any structured simulation,

-~~~

either:
1) the simulation runs at lmt'r
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2) the simulation has at least z°’“ statements. jmwﬁ T EPLSAL
?w. use Cys €5 €4 to denote positive constants.
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I.e., there are goto Programs that can only be simulated by either very slow
or very large structured programs. i

In the sequel, we will concentrate on the combinatorial theorem that
achieves these bounds. The programming language significance of the graphs
and relations studied here is discussed dxtc‘n"dvoly in [1].

2. Pre ries

A directed graph G is an ordered Pair (V,E) of vertioes V and edges
EcVxV. Apath in G is an ordered sequence of vertices ‘conncet'od by edges.
For vertices x,y ¢ V, 1let dc(xd) denote the length of a minimum length path
fom X to y. If no such path exists, then dc(x,y) gl >

A binary tree is a directed graph that congists of either a single vertex
OT a root x and edges between x and the root of each of two binary trees called
the left and right subtrees of x. A vertex x in a binary tree is a leaf 1if 1t
has no sons. If H = (V,E) is a binary tree with root r ¢ V and leaf £ ¢ V, and
P= (xl,...,xn) i- a direct path from X, =T to X, = %, then P 1s called a
branch of B. An ancestor tree G = (V,E) 18 a directed graph with the following
Properties:

1) There exists a swhset !o € E such that Go - (v,zo) is a binary tree;

2) If (x,y) ¢ E - Bo’ then y 1s an ancestor of x in Go’

Let Gn denote the n x n rook-connected array of vertices. 1If the vertices
of G, are indexed by (1,§) for 1<i,jsn, then, except for the obvious extremal
conventions, there are symmetric edges between (1,j) and (1,341), (1+1,3).

For any directed graph G = (V,E), the notion of boundary makes sense.

Let Ac V. Then the boundary of A is d‘fined as

3(A) = {yeV-A: FxeA such that (x,y)¢E)}

Clearly, 3(A) denotes the oit of vertices not in A which are reachable from A by
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a single Odn-f : B0 R :
By a simple improvement of a result from (1], we have the following
important property of arrays:

Lemma 1: (Boundary Lemma) Let A be a set of vertices of G, with IAI < :u’l'!“.ﬁ
Then ;
2]al s a2,

3. Graph Embedding
The following relation was defined in [1]. Let G = (V,E) and G* = (Ve Es)
be directed graphs, and let S,T > 0. Then G ss 7 G* if there is a partial
9 :
function (called an embedding) ©:V* + Vu{A}, of the nodes of G* to the nodes of
G and a special node A, such that

1) 0s 107 @) 55 for a1 x € v;
2) For all x* ¢ Q‘l(V), if dG.(Q(x*) »Y) < = for some y € V, then there exists
y* € 071(y) such that dg, (x*,y*) < d; ($(x*) ,y).
If ¢(v*) = A, then we refer to v* as a bookkeeping node. 1f ¢(v*) = v=i,
then v* is said to be a copy of v. Condition (1) states that there are at most

S copies of any veV in G*., Condition (2) states that the embedding induces at

most a T-fold increase in path length.

Theorem 1: (1, Theorem 5.2] 1f S(n), T(n) are such thag Gn ss(n).r(n) G* for
some ancestor tree G*, then '
T(n) + log,S(n) 2 log,n + e 1)

The right hand side of inequality (1) cammot be improved, since with S(n) 5.1. .
the construction of [2] shows that

T(n) = 0(10321)

. The notion of boundary used here corresponds to the coboundary of [1].
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1s achievable for any n vertex graph. Theorem 1, however, gives only a linear
bound on S(n), and it has been conjectured that a non-polynomial lower bound on
s(n) exists. In the next section we obtain iuch a bound.

4. E_igmorqn

In this section, we obtain the following improvement of Theorem 1:
- * . § ;
Theorem 2: 1f G® is an ancestor tree and Gn ‘s(n).t(n) G*, then
T(n) + loazlogzs(n) 2 log,n - O(Iogzlogzn).

Proof: For notational convenience, let us systematically confuse a graph with

its set of vertices, so that "x ¢ G" and "x ¢ V" mean the same thing if G = (V,E).

We assume Gn Sg 7 G* via an embedding ¢. For any A* c G*, we use ®(A*) to
denote the set of x € G = which are ¢-images of some x* ¢ A*. Henceforth, we

assume that G* is a binary tree; it will be obvious as we progress that if G*

' contains ancestor edges, then the proof is completely unaffected.

Let P = (x*,..., {) be a path of G*. Then P is an admissible path if it
is constructed as follows: For each x; (1sisk), let Lg denote the subtree of

x4 containing x§, ,and let R} denote the other subtree of x¥; then either

) o@p) = 4@
or

b) Q(R:) 2 n?/4,

Note that the definition of admissible path is more general than that used in [1].
Indeed, it is by proving the existence of mamy mn admissible paths that we obtain

our result.

We fix an arbitrary admissible path P = (xg.....x{) and define for 1 = 1,...,k

the subtree a; -~ l.g v {xg}. We shall say that ng is emall if IO(B;)I < n?/4;

otherwise n; is said to be large. Let
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in particular, D, 1s the set of vertices in Gn vhich have copies in some small llz.
Lerma 3: For some j,

n?

2
n
% slnjlsz.

Proof: We need only show that there exists an integer j such that IDjl 2 n2/4,

since if j is the least such integer, then (assuming Ibol = 0)

2 _n?
Iyl s IDy_\1 + |e(BY] < =+ == n?/2.

We claim that IO(_Rt)l 2 n2/4. For suppose otherwise, whence IQ(L{)I < |0(np|
by the definition of an admissible path. Now 4

o(G*) = o(H}) v O(RY),
so that

n = [9(6%)] < [OP] + 1 + [eRD)] < 210RP] + 1,
and thus |

JoRD)| 2 n?/4.

Let j be such that IO(RS)] = 0, and let 1 be the largest integer such that

N(R;)I 2 n2/4. Then

IeRD] < n2/4, for L = 14+1,...,. |

Hence,

IQ(R:)I <1+ IQ(L:)I <1+ IQ(R:)I <1+ n2/4 for all £ = i+1,...,n.

But then each such H} is small, and therefore
®(RY) < ‘ ’ o(Hp) < Dj‘, ‘ |
15253

But by the definition of {1, |nJ| 2 n?/4. o
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Letting k satisfy Lemma 3, we find that Dk satisfies the hypothesis of the
Boundary Lemma, so that

a1 = 2210112 2 3

Lemma 4: 1f %, is the number of large trees H} along an admissible path P, thenm

Qp = {v* ¢ By, large: for some small Y and x* ¢ ﬁs. dg(x*,v#) s T}.

i.e., Q‘l‘ is the set of vertices in large nz which are reachable from some node in

a small Hg by a path of length at most T. We show that |3(Dk)l < IQTI by defining
an injection g : a(nk) > Q’I’ For y ¢ 3(Dk), choose some x ¢ bk adjacent to y.

Let x* be a copy of x in a small H%, let y* be a copy of y such that dc.(x*.y*) < T,

J
and set g(y) = y*. Since ¢g(y) = #(y*) = y, g 1s one-one. Thus, from (2),

lopl 2 131 2 73,
but
1Qpl s I{H} : B} large}|
o |{vk : vk ¢ l!;, large; v* within distance T of root of H;}I

< "'P . 2T O
nIZTﬂ/ &

To complete the proof, we now show that there are at least 2 admissible
paths. Since each admissible path corresponds to a distinct leaf* of G* and
6 s
n

n ,-T o
2 <167 w)) < 519) = a2

and the result follows.

' Without loss of generality, we assume that no leaf of G* is a bookkeeping node.
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Lemma §: There exist at least 2 min admissible paths, where z_in - - 2

Proof: We prove the result by showing that at least ‘-1n independent binary
choices must be made to construct an arbitrary admissible path. Consider a
partial admissible path xl,...,xk (3.e., the initial segment of an admissible
path). If only one subtree of x, is large, then the admissible path can only
be extended down that subtree. However, if both subtrees are large, then the
admissible path can be extended down either subtree without violating the
condition (a-b). By Lemma 4, there ara at least 2

min
admissible path, and, for each such subtree, there is a node in the admissible

large subtrees along every

path with two large subtrees. m
By using the modeling strategy detailed in [1], we obtain the following:

Corol : For each n there is an n statement goto program Q such that for any

structured simulation of Q either
1) the simulating program is slower than Q by a factor of ¢y log n, or
concC
2) the simulating program is larger than Q by a factor of 2 2" 3.

An interesting interpretation of this result as a space-time tradeoff is

shown in Figure 1, which illustrates, for fixed n > 0,

$(T,n) > 2°/2

For any fixed value K < T s c, log n, limiting the loss of time efficiency in

1
the simulating program, the shaded region of Figure ! shows the only values of

S,T which are achievable.
Acknowledgsments: We would like to thank Nancy Lynch, Ronald Rivest, Albert Meyer

and Arnold Rosenberg for suggesting that we look for the
improved embedding theorem contained in this paper.
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